Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 13(1): 2084, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747073

ABSTRACT

The aims of this study were to perform pre-surgery miRNA profiling of patients who develop Vasoplegic syndrome (VS) after coronary artery bypass grafting (CABG) and identify those miRNAs that could be used as VS prognostic tools and biomarkers. The levels of 754 microRNAs (miRNAs) were measured in whole blood samples from a cohort of patients collected right before the coronary artery bypass grafting (CABG) surgery. We compared the miRNA levels of those who developed VS (VASO group) with those who did not (NONVASO group) after surgery. Six miRNAs (hsa-miR-548c-3p, -199b-5p, -383-5p -571 -183-3p, -30d-5p) were increased and two (hsa-1236-3p, and hsa-miR770-5p) were decreased in blood of VASO compared to NONVASO groups. Receiver Operating Characteristic (ROC) curve analysis revealed that a combination of the miRNAs, hsa-miR-30d-5p and hsa-miR-770-5p can be used as VS predictors (AUC = 0.9615, p < 0.0001). The computational and functional analyses were performed to gain insights into the potential role of these dysregulated miRNAs in VS and have identified the "Apelin Liver Signaling Pathway" as the canonical pathway containing the most target genes regulated by these miRNAs. The expression of the combined miRNAs hsa-miR-30d and hsa-miR-770-5p allowed the ability to distinguish between patients who could and could not develop VS, representing a potential predictive biomarker of VS.


Subject(s)
MicroRNAs , Vasoplegia , Humans , Vasoplegia/genetics , MicroRNAs/metabolism , Biomarkers , Prognosis , Signal Transduction , Gene Expression Profiling
2.
Front Genet ; 13: 857728, 2022.
Article in English | MEDLINE | ID: mdl-35719399

ABSTRACT

Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.

3.
Transplantation ; 106(2): 289-298, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33859149

ABSTRACT

BACKGROUND: Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS: Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6 h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs in the heart, and computational and functional analyses were performed to compare the differentially expressed miRNAs and find their putative targets and their related enriched canonical pathways. RESULTS: An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with 2 miRNAs, miR-30a-3p, and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS: These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD-induced miRNA's on early and late cardiac allograft function must be investigated.


Subject(s)
Heart Transplantation , MicroRNAs , Animals , Brain Death , Heart Transplantation/adverse effects , Humans , MicroRNAs/genetics , Rats , Rats, Wistar , Saline Solution, Hypertonic/pharmacology , Saline Solution, Hypertonic/therapeutic use , Tissue Donors
4.
Exp Parasitol ; 221: 108060, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33338467

ABSTRACT

Amoebic keratitis (AK) is a sight-threatening infection characterized by a severe inflammation of the cornea, caused by the free-living protozoan of the genus Acanthamoeba. Identification of amoebic proteins involved in AK pathogenesis may help to elucidate molecular mechanisms of infection and contribute to indicate diagnostic and therapeutic targets. In this study, we evaluated changes in the expression profile of Acanthamoeba proteins triggered by the invasive process, using an approach involving two-dimensional polyacrylamide gel electrophoresis (2DE PAGE), followed by mass spectrometry identification (ESI-IT-TOF LC-MSn). AK was induced by intrastromal inoculation in Wistar rats, using trophozoites from a T4 genotype, human case-derived A. castellanii strain under prolonged axenic culture. Cultures re-isolated from the lesions after two successive passages in the animals were used as biological triplicate for proteomic experiments. Analysis of the protein profile comparing long-term and re-isolated cultures indicated 62 significant spots, from which 27 proteins could be identified in the Acanthamoeba proteome database. Five of them (Serpin, Carboxypeptidase A1, Hypothetical protein, Calponin domain-containing protein, aldo/keto reductase) were exclusively found in the re-isolated trophozoites. Our analysis also revealed that a concerted modulation of several biochemical pathways is triggered when A. castellanii switches from a free-living style to a parasitic mode, including energetic metabolism, proteolytic activity, control of gene expression, protein degradation and methylation of DNA, which may be also involved in gain of virulence in an animal model of AK.


Subject(s)
Acanthamoeba Keratitis/metabolism , Acanthamoeba castellanii/metabolism , Protozoan Proteins/biosynthesis , Acanthamoeba Keratitis/parasitology , Analysis of Variance , Animals , Disease Models, Animal , Humans , Male , Proteomics , Protozoan Proteins/genetics , Rats , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization , Two-Dimensional Difference Gel Electrophoresis
5.
Exp Parasitol, v. 221, 108060, fev. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3511

ABSTRACT

Amoebic keratitis (AK) is a sight-threatening infection characterized by a severe inflammation of the cornea, caused by the free-living protozoan of the genus Acanthamoeba. Identification of amoebic proteins involved in AK pathogenesis may help to elucidate molecular mechanisms of infection and contribute to indicate diagnostic and therapeutic targets. In this study, we evaluated changes in the expression profile of Acanthamoeba proteins triggered by the invasive process, using an approach involving two-dimensional polyacrylamide gel electrophoresis (2DE PAGE), followed by mass spectrometry identification (ESI-IT-TOF LC-MSn). AK was induced by intrastromal inoculation in Wistar rats, using trophozoites from a T4 genotype, human case-derived A. castellanii strain under prolonged axenic culture. Cultures re-isolated from the lesions after two successive passages in the animals were used as biological triplicate for proteomic experiments. Analysis of the protein profile comparing long-term and re-isolated cultures indicated 62 significant spots, from which 27 proteins could be identified in the Acanthamoeba proteome database. Five of them (Serpin, Carboxypeptidase A1, Hypothetical protein, Calponin domain-containing protein, aldo/keto reductase) were exclusively found in the re-isolated trophozoites. Our analysis also revealed that a concerted modulation of several biochemical pathways is triggered when A. castellanii switches from a free-living style to a parasitic mode, including energetic metabolism, proteolytic activity, control of gene expression, protein degradation and methylation of DNA, which may be also involved in gain of virulence in an animal model of AK.

6.
J Leukoc Biol ; 108(4): 1183-1197, 2020 10.
Article in English | MEDLINE | ID: mdl-32362022

ABSTRACT

Heterogeneity and high plasticity are common features of cells from the mononuclear phagocyte system: monocytes (MOs), macrophages, and dendritic cells (DCs). Upon activation by microbial agents, MO can differentiate into MO-derived DCs (MODCs). In previous work, we have shown that during acute infection with Plasmodium berghei ANKA (PbA), MODCs become, transiently, the main CD11b+ myeloid population in the spleen (SP) and once recruited to the brain play an important role in the development of experimental cerebral malaria (ECM). Here, we isolated 4 cell populations: bone marrow (BM) MOs (BM-MOs) and SP-MOs from uninfected mice; BM inflammatory MOs (BM-iMOs) and SP-MODCs from PbA-infected mice and used a system biology approach to a holistic transcriptomic comparison and provide an interactome analysis by integrating differentially expressed miRNAs (DEMs) and their differentially expressed gene targets (DEGs) data. The Jaccard index (JI) was used for gauging the similarity and diversity among these cell populations. Whereas BM-MOs, BM-iMOs, and SP-MOs presented high similarity of DEGs, SP-MODCs distinguished by showing a greater number of DEGs. Moreover, functional analysis identified an enrichment in canonical pathways, such as DC maturation, neuroinflammation, and IFN signaling. Upstream regulator analysis identified IFNγ as the potential upstream molecule that can explain the observed DEMs-Target DEGs intersections in SP-MODCs. Finally, directed target analysis and in vivo/ex vivo assays indicate that SP-MODCs differentiate in the SP and IFNγ is a main driver of this process.


Subject(s)
Dendritic Cells/immunology , Gene Expression Regulation/immunology , Malaria, Cerebral/immunology , MicroRNAs/immunology , Monocytes/immunology , Plasmodium berghei/immunology , RNA, Messenger/immunology , Animals , Dendritic Cells/pathology , Malaria, Cerebral/genetics , Malaria, Cerebral/pathology , Mice , Mice, Knockout , MicroRNAs/genetics , Monocytes/pathology , RNA, Messenger/genetics , Transcriptome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...